Formulari de física

El document consta de 4 pàgines.

- Fórmules 1a part (mecànica): pàgina 2.
- Fórmules 2a part (electromagnetisme): pàgina 3.
- Fórmules 1a part resumida + 2a part sencera: pàgina 4.

Els qui recupereu el parcial imprimiu les pàgines 2 i 3, els que no, podeu portar només la 3 (la pàgina 4 és pels qui no recupereu el parcial, però voleu algunes fórmules del parcial igualment).

Assegura’t que tens l’última versió el dia de l’examen!

Última modificació: 21:54, 22 de juny de 2018
1 Cinemàtica
1.1 Descripció del moviment
Arc d’una corba: \(s(t) = \int_{t_0}^{t} \ddot{r}(\tau) \, d\tau \).
- \(\ddot{x} = \dddot{r} \).
- \(\ddot{y} = \dddot{r} \).

3 D. de sistemes puntuals
3.1 Moment lineal
Moment lineal: \(\vec{P} = \sum \vec{P}_i = \sum \vec{M}_i \).
Impuls mec.: \(\vec{I} = \int_{t_0}^{t} \vec{F} \, dt = \vec{P}(t_f) - \vec{P}(t_i) = \Delta \vec{P} \).

3.2 Sòlid rígid
Moment angular: \(\vec{L}_i = \sum \vec{r}_i \times \vec{P}_i = \vec{M}_i \).

6 Gravitació
Camp: \(\vec{g} = -G \frac{M}{r^2} \).
Força: \(\vec{F}_b = -G \frac{m_m m_b}{r_{ab}^2} \).
Potencial: \(V = \frac{1}{2} \frac{m_{ab}^2}{r_{ab}} \).
Energia potencial: \(U = -G \frac{m_m m_b}{r_{ab}} \).
Energia cinètica: \(\frac{1}{2} \frac{m_{ab}^2}{r_{ab}} \).

6.1 Lleis de Kepler
2a: El radi vector es comença a ser igual a la distància.
3a: \(T^2 = \frac{4\pi^2}{GM} \).

6.2 Problema de Kepler
Excentricitat: \(e = \sqrt{1 + \frac{2EL}{m^2}} \).
Posició: \(\frac{1}{r} = \frac{m\cos \theta}{k} \).

6.3 Problema dels dos cosos
Substitucions a Kepler: \(\frac{m}{m_1 + m_2} \).

1.2 Moviment circular
Posició: \(\vec{r}(t) = R(\cos \theta, \sin \theta, 0) \).
Velocitat: \(\vec{v} = v \hat{t} \).
Moment d'inèrcia: \(\vec{I} = \sum \vec{I}_i = \sum \vec{r}_i \times \vec{v}_i \).

2 Dinàmica
2.1 \(\mathbb{R} \)
F. gravitatòria: \(\vec{F}_{ab} = -G \frac{m_m m_b}{r_{ab}^2} \).
F. elàstica: \(\vec{F} = -kx \).
Mov. osc. harm.: \(x(t) = A \sin(\omega t + \varphi_0), \omega = \sqrt{k/m}, T = 2\pi \sqrt{m/k} \).
F. fregament estàtica: \(|\vec{F}| \leq \mu |\vec{N}| \).
F. fregament dinàmica: \(|\vec{F}| = \nu \frac{dx}{dt} \).
F. fregament viscós: \(\vec{F}_f = b \vec{v} \).
E. cinètica: \(E = \frac{1}{2} \nu \frac{dx}{dt} \).
E. potencial: \(U(x) \) t. q. \(\frac{dU}{dx} = -F(x) \).

2.2 \(\mathbb{R}^3 \)
Treball (J): \(W = \int_{x_1}^{x_2} \vec{F} \cdot d\vec{x} \).
- \(\ddot{x} = \dddot{r} \).
- \(\ddot{y} = \dddot{r} \).

2.3 Sòlid rígid
Moment d'inèrcia: \(I = \sum m_i \).
- \(I = I_x = \frac{1}{2} \sum m_i \frac{r^2}{\omega} \).
- \(I = I_{xy} = \frac{1}{2} \sum m_i \omega^2 \).
- \(I = I_{xy} = \frac{1}{2} \sum m_i \omega^2 \).
E. potencial: \(U = \frac{1}{2} I \omega^2 \).
Gravitació: \(\vec{M} = \vec{r} \times (m \vec{g}) \).

Pla (eix paral·lell): \(\frac{1}{2} m L^2 \).
Corona circular/Cub: \(\frac{1}{2} m (2R^2 + r^2) \).

3.4 Sistema de partícules
Centre de massa: \(\vec{r}_{CM} = \sum m_i \vec{r}_i \).
Moment lineal: \(\vec{P} = \sum \vec{P}_i = \sum \vec{M}_i \).

4 Percussions i xocs
Canvi m. lineal percussió: \(\Delta \vec{P} = \vec{I} \).
Canvi m. angular percussió: \(\vec{A} = \Delta \vec{L} \).

5 Canvis de s. de ref.
• \(\frac{d\vec{v}}{dt} = \frac{d\vec{v}}{dt} + \omega \times \vec{u} \).
• \(\vec{r}_P = \vec{r}_{OP} + \vec{r}_P \).
• \(\vec{a}_{CM} = \vec{a}_{CM} + \vec{a}_{OP} \).

7 Electrostàtica

Constants: \(k = \frac{1}{4\pi\varepsilon_0} \), \(\varepsilon_0 = 8,854 \times 10^{-12} \).

Camp e.: \(\vec{E} = k \frac{\vec{q}}{|r - \vec{r}_{AB}|^3} \)
\(\vec{E}(\vec{r}) = \int_\nu \frac{k \rho(\vec{r}')}{||\vec{r} - \vec{r}'||} \) dV'.

Força (Coulomb): \(F_{AB} = k \frac{q_{AB}}{|r_{AB}|^3} \)
\(\vec{E}_{AB} = q_{AB}\vec{E}_A \).

E. potencial: \(U = k \frac{q_{AB}}{|r_{AB}|} \)
\(U = \frac{1}{2} \int_\nu \rho(\vec{r})V(\vec{r}) \) dV.

Potencial: \(V = k \frac{q}{r} \), \(\vec{V}(\vec{r}) = \int_\nu \frac{k \rho(\vec{r}')}{||\vec{r} - \vec{r}'||} \) dV'.
\(V = \int_{\infty}^{\vec{r}} \vec{E} \) d\vec{r}, \(\vec{V}_A - \vec{V}_B = \int_{A}^{B} \vec{E} \) d\vec{r}.
\(\vec{E} = -\nabla V \).
\(\Delta V = \frac{\partial^2 V}{\partial q^2} \).

Camp conservatiu: \(\oint_{C} \vec{E} \cdot \vec{dl} = 0 \).

L. Gauss: \(\int_{V} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \int_{\nu} \rho d\nu = \frac{Q_{\text{ext}}}{\varepsilon_0} \).

Discont. superf.: \(\int_{V} \vec{E} \cdot d\vec{S} = \vec{\varepsilon}_0 \).

7.1 Dipsos

Moment dipolar: \(\vec{p} = 2aq\vec{u} \).

Potencial: \(\vec{V}(\vec{r}) = k \frac{q_{\text{ext}}}{r} \)
\(\vec{V}(\vec{r}) = \vec{V}(r) \).

Camp e.: \(\vec{E} = \frac{k q}{r^2} \)
\(\vec{E} = \frac{\vec{q}}{4\pi r^2} \).

Força: \(\vec{F} = \nabla (\vec{V} \cdot \vec{E}) \).

Moment: \(\vec{M} = \vec{p} \times \vec{E} \).

7.2 Condensadors

Capacitat: \(C = \frac{Q}{V_1 - V_2} \).

Intensitat: \(I = C \frac{dv}{dt} = \frac{Q}{\varepsilon_0} \).

Energia: \(U = \frac{1}{2} C (V_1 - V_2)^2 \).

Càrrega RC: \(V(t) = e(1 - e^{-\frac{t}{\tau}}) \), \(I = \frac{e}{\tau} \frac{d}{dt} \).

8 Electrocinètica

Conserv. càrrega: \(\frac{d}{dt} \int_{\nu} \rho d\nu = \int_{\nu} \frac{d}{dt} \vec{J} \cdot d\vec{S} = 0 \),
\(\frac{d}{dt} \nabla \vec{J} = 0 \).

9 Magnetostàtica

Camp m.: \(\vec{B} = \frac{\mu_0}{4\pi} \int_{V'} \vec{J}(\vec{r}') \times (\vec{r} - \vec{r}') dV' \), \(\mu_0 = 4\pi \times 10^{-7} \).

Camp m. vol.: \(\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{V} \vec{J}(\vec{r}') \times (\vec{r} - \vec{r}') dV' \).

Camp m. fil.: \(\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \int_{C} \frac{\vec{d}(\vec{r} - \vec{r}')}{||\vec{r} - \vec{r}'||^3} d\langle \vec{r}', \vec{r} \rangle \).

F. Lorentz: \(\vec{F} = q \times \vec{v} \times \vec{B} = \vec{H} \times \vec{B} \).

F. sobre corrent: \(\vec{F} = \int_{\nu} \vec{J} \times \vec{B} d\nu \).

Moment sobre corrent: \(\vec{M}_0 = \int_{V} \vec{r} \times (\vec{j} \times \vec{B}) dV \).

Camp Solenoidal: \(\oint_{C} \vec{B} \cdot d\vec{S} = 0 \), \(\nabla \cdot \vec{B} = 0 \).

L. Ampère: \(\oint_{C} \vec{B} \cdot d\vec{l} = I_{\text{int}} \mu_0, \nabla \cdot \vec{B} = \mu_0 \vec{J} \).

10 Inductància

Flux: \(\Phi = \int_{V} \vec{B} \cdot d\vec{S} \).

L. Faraday: \(\varepsilon = -\frac{d\Phi}{dt} = \int_{V} \vec{B} \cdot d\vec{l} = -\frac{d}{dt} \int_{V} \vec{B} \cdot d\vec{S} \).

10.1 Bobines

Camp m.: \(\vec{B} = \mu_0 n \vec{I} \), \(n = N/l \).

Autoinductància: \(L = \frac{\vec{J}}{\mu_0} \).

Potencial: \(\varepsilon = L \frac{dI}{dt} \).

Càrrega RL: \(I(t) = \frac{\varepsilon}{R} \left(1 - e^{-\frac{t}{\tau}} \right) \).

Energia RL: \(U = \frac{1}{2} LI^2 \).

11 Maxwell

Gauss: \(\nabla \cdot \vec{E} = \frac{\varepsilon}{\varepsilon_0}, \oint_{\nu} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \int_{\nu} \rho d\nu \).

Faraday: \(\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \),
\(\oint_{\nu} \vec{E} \cdot d\vec{l} = \frac{d}{dt} \int_{V} \vec{B} \cdot d\vec{S} = 0 \).

Gauss m.: \(\nabla \cdot \vec{B} = 0, \oint_{\nu} \vec{B} \cdot d\vec{S} = 0 \).

Ampère-Maxwell: \(\nabla \times \vec{B} = \mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{d\vec{E}}{dt} \).

\(\oint_{\nu} \vec{B} \cdot d\vec{l} = \mu_0 \int_{V} \vec{J} \cdot d\vec{S} + \varepsilon_0 \mu_0 \frac{d}{dt} \int_{V} \vec{E} \cdot d\vec{S} \).

12.1 Integrais

\(\int \frac{1}{\sqrt{a + x^2}} \) dx = log(\sqrt{a + x^2} + x).

\(\int \frac{x}{\sqrt{a + x^2}} \) dx = \sqrt{a + x^2}.

\(\int \frac{1}{\sqrt{a + x^2}} \) dx = \frac{x}{\sqrt{a + x^2}}.

\(\int \frac{1}{\sqrt{a + x^2}} \) dx = \frac{x}{\sqrt{a + x^2}}.

\(\int \sec dx = \ln(|\tan + \sec|) \).

12.2 Canvis de variables

Polars a \(\mathbb{R}^2 \):
\(\int_{U} f(x, y) dx dy = \int_{V} f(r \cos \varphi, r \sin \varphi) r dr d\varphi \).

Cilíndriques a \(\mathbb{R}^3 \):
\(\int_{U} f(x, y, z) dx dy dz = \int_{V} f(r \cos \varphi, r \sin \varphi, z) r dr d\varphi dz \).

Esfèriques a \(\mathbb{R}^3 \):
\(\int_{U} f(x, y, z) dx dy dz = \int_{V} f(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) r^2 \sin \theta dr d\varphi d\theta \).

12.3 EDOs

\(\frac{d}{dt} \frac{d}{dt} = \frac{d(n \ln v)}{dt} \).

Fórmules: \(a \vec{v} + b \vec{w} + c = 0 \), \(\frac{a}{b} \vec{v} + \frac{b}{c} \vec{w} + \frac{c}{a} = 0 \),
\(w = v + \frac{c}{a} \), \(\frac{a}{b} \vec{w} + w = 0 \), \(\frac{a}{b} x + 1 = 0 \), \(x = -\frac{a}{b} \);
\(w = ke^{-\frac{a}{b} t} = v + \frac{c}{a} \), \(v = ke^{-\frac{a}{b} t} - \frac{c}{a} \).

12.4 Altres

Esfera: \(S = 4\pi r^2 \), \(V = \frac{4}{3}\pi r^3 \).

Nom: ___________
1. Cinemàtica
1.1 Descripció del moviment
Arc d’una corba: \(s(t) = \int_{t_0}^{t} \| \vec{r}'(\tau) \| d\tau \).

Vec. unitari: \(\vec{e} \perp \vec{r}'(\tau_0) = \left(\frac{\partial \vec{r}'}{\partial \tau} \right)_{\tau_0} = \vec{t} \).

Vec. unitari normal: \(\vec{n} = \frac{\| \vec{r}' \| \times \vec{t} \| \vec{r}' \|}{\| \vec{r}' \|} = \vec{B} \).

Normal: \(\vec{B} = \vec{t} \times \vec{n} \).

Curvatura: \(\kappa = \frac{\| \vec{n} \|}{\| \vec{r}' \|} \), Radius.

Centre de curvatura: \(P = \vec{r} + \vec{p} \).

Velocitat: \(\vec{v} = \vec{v}' \).

Aceleració: \(\vec{a} = \vec{a}' \).

1.2 Moviment circular
Posició: \(\vec{r}(t) = \vec{R}(\cos \theta, \sin \theta, 0) \).

Celeritat: \(\vec{v} = \vec{R}' \).

Aceleració: \(\vec{a} = (\vec{R} \vec{a}' + (\vec{R} \vec{a}') \vec{n}) \).

1.3 Sòlid rígid
Moviment fixat origen P del sòlid: \(\vec{\omega} = \vec{\omega} \times \vec{r} \).

\(\vec{\theta} = \vec{\theta} \times \vec{r} \).

Centre instantània de rotació: \(\vec{r}_{IR} = \vec{p} \times \frac{\vec{\omega} \vec{r}}{\| \vec{\omega} \|} \).

2 Dinàmica
2.1 R
F. gravitatòria: \(\vec{F}_{gb} = -G\frac{mM}{r^2} \).

F. elèctrica: \(\vec{F}_e(x) = -kx \).

Mov. osc. harm.: \(x(t) = A \sin(\omega t + \phi_0), \omega = \sqrt{\frac{F}{m}} \).

F. fregament estàtica: \(|\vec{F}_{fb}| \leq \mu |\vec{N}| \).

F. fregament dinàmica: \(|\vec{F}_{fd}| \leq \mu |\vec{N}| \).

F. fregament viscós: \(\vec{F}_d = \vec{r} \).

E. cinètica: \(\vec{E}_c = \frac{1}{2} m \vec{v}^2 \).

E. potencial: \(U(x) \).

E. mecànica: \(\vec{E}_m = \vec{E}_c + E_p \).

E. pot. elèctrica: \(\frac{1}{kB} \).

2.2 R³
Treball (J): \(W_{1 \rightarrow 2} = \int_{F_1}^{F_2} \vec{F} \cdot d\vec{r} \).

\(\int d\vec{F} = \vec{F} \cdot d\vec{F} \).

Potència (W): \(P = \frac{dW}{dt} = \vec{F} \cdot \vec{v} \).

\(E_c = \frac{1}{2} m \vec{v}^2 \).

Si F conservatiu: \(\vec{F} = -\vec{\nabla} U(\vec{r}) \).

\(E_c = E_c(\vec{r}) = \vec{E}_c(\vec{r}) \).

3 D. de sistemes puntuals
3.1 Moment lineal
Moment lineal: \(\vec{P} = \vec{m} ' \).

Impuls mec.: \(\vec{I} = \int_{t_0}^{t} \vec{\tau} dt = \vec{\tau}(t_2) - \vec{\tau}(t_1) = \vec{D} \).

Moment d’una força respecte \(O = \vec{M}_O = \vec{r} \times \vec{P}, \vec{M}_A = \vec{A} \times \vec{F} + \vec{M}_O \).

3.2 Moment angular
Moment angular: \(\vec{L}_O = \vec{r} \times \vec{m} ' = \vec{r} \times \vec{P}, \vec{L}_A = \vec{A} \times \vec{P} \).

\(\vec{M}_O = \vec{M}_O \).

Si \(\vec{A} \) en moviment: \(\vec{L}_A = \vec{L}_A - \vec{v} \times \vec{P} \).

Impuls angular: \(\vec{L} = \int_{t_1}^{t_2} \vec{M}_A dt \).

3.3 Mèrica d’una corba
Moment d’ènemia: \(I = \sum m_i d_i^2 \).

\(\vec{I}_c = \vec{I} \).

Teor. Steiner: \(I_O = I_{CM} + M \vec{d}^2 \).

\(E = \frac{1}{2} I \vec{w}^2 \).

E. potencial: \(U = U_{CM} \).

Gravetat: \(\vec{F}_{grav} = \vec{r} \times \vec{m} \).

Mència d’ènemia
Respecte al CM: \(\vec{B} = \frac{1}{2} m \vec{v}^2 \).

Pla (exx perpendicular): \(\frac{1}{2} m (\vec{A} \cdot \vec{w} + \vec{w} \cdot \vec{A}) \).

Pla (exx paral·lel): \(\frac{1}{2} m \vec{r} \times \vec{v} \).

3.4 Sistema de partícules
Centre de massa: \(\vec{r}_{CM} = \sum \vec{m}_i \vec{r}_i \).

Moment lineal: \(\vec{P} = \sum \vec{P}_i = \vec{M}_{CM} \).

\(\vec{I} = \sum m_i \vec{r}_i \).

1a llei conservació: \(\frac{d}{dt} \vec{P} = \vec{F} \).

Moment angular: \(\vec{L}_O = \sum \vec{L}_i = \vec{r}_i \times \vec{m}_i \).

A punt mobil: \(\vec{L}_A = \vec{L}_O + \vec{M}(\vec{r}_A - \vec{r}_C) \times \vec{v}_A - \vec{v}_A \times \vec{P} \).

\(\vec{M} = \vec{M}_{ext} + \vec{M}(\vec{r}_A - \vec{r}_C) \).

4 Percussions i xocs
Canvi m. lineal percussió: \(\vec{P}_1 = \vec{I} \).

Canvi m. angular rígida: \(\vec{I} = \vec{I}_1 \).

4.1 Altres
Esfera: \(S = 4\pi r^2, V = \frac{4}{3} \pi r^3 \).

Nom: Buit

3.3 Sòlid rígid
Moment d’ènemia: \(I = \sum m_i d_i^2 \).

\(\vec{L}_o = \vec{I}_o = \vec{L} \).

\(\vec{M}_O = \vec{M}_O \).

\(\vec{M}_O = \vec{M}_O \).

\(\vec{L}_A = \vec{L}_A - \vec{v} \times \vec{P} \).

Impuls angular: \(\vec{L} = \int_{t_1}^{t_2} \vec{M}_A dt \).

3.4 Sistema de partícules
Centre de massa: \(\vec{r}_{CM} = \sum \vec{m}_i \vec{r}_i \).

\(\vec{P} = \sum \vec{P}_i = \vec{M}_{CM} \).

\(\vec{I} = \sum m_i \vec{r}_i \).

1a llei conservació: \(\frac{d}{dt} \vec{P} = \vec{F} \).

\(\vec{I} = \sum m_i \vec{r}_i \).

\(\vec{L}_O = \sum \vec{L}_i = \vec{r}_i \times \vec{m}_i \).

\(\vec{M} = \vec{M}_{ext} + \vec{M}(\vec{r}_A - \vec{r}_C) \).

\(\int d\vec{F} = \vec{F} \cdot d\vec{F} \).

Potència: \(P = \frac{1}{2} I \vec{w}^2 \).

\(\vec{V} = \vec{V}_0 \).

\(\vec{V} = \vec{V}_0 \).

\(\vec{V} = \vec{V}_0 \).

\(\vec{L} = \vec{L}_O + \vec{M}(\vec{r}_A - \vec{r}_C) \times \vec{v}_A - \vec{v}_A \times \vec{P} \).

\(\vec{D} = \vec{D}_{ext} + \vec{M}(\vec{r}_A - \vec{r}_C) \).

\(\vec{L} = \vec{L}_O + \vec{M}(\vec{r}_A - \vec{r}_C) \).